Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nature ; 617(7961): 574-580, 2023 May.
Article in English | MEDLINE | ID: covidwho-2326179

ABSTRACT

As of August 2022, clusters of acute severe hepatitis of unknown aetiology in children have been reported from 35 countries, including the USA1,2. Previous studies have found human adenoviruses (HAdVs) in the blood from patients in Europe and the USA3-7, although it is unclear whether this virus is causative. Here we used PCR testing, viral enrichment-based sequencing and agnostic metagenomic sequencing to analyse samples from 16 HAdV-positive cases from 1 October 2021 to 22 May 2022, in parallel with 113 controls. In blood from 14 cases, adeno-associated virus type 2 (AAV2) sequences were detected in 93% (13 of 14), compared to 4 (3.5%) of 113 controls (P < 0.001) and to 0 of 30 patients with hepatitis of defined aetiology (P < 0.001). In controls, HAdV type 41 was detected in blood from 9 (39.1%) of the 23 patients with acute gastroenteritis (without hepatitis), including 8 of 9 patients with positive stool HAdV testing, but co-infection with AAV2 was observed in only 3 (13.0%) of these 23 patients versus 93% of cases (P < 0.001). Co-infections by Epstein-Barr virus, human herpesvirus 6 and/or enterovirus A71 were also detected in 12 (85.7%) of 14 cases, with higher herpesvirus detection in cases versus controls (P < 0.001). Our findings suggest that the severity of the disease is related to co-infections involving AAV2 and one or more helper viruses.


Subject(s)
Adenovirus Infections, Human , Coinfection , Dependovirus , Hepatitis , Child , Humans , Acute Disease , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/genetics , Dependovirus/isolation & purification , Epstein-Barr Virus Infections/epidemiology , Epstein-Barr Virus Infections/virology , Hepatitis/epidemiology , Hepatitis/virology , Herpesvirus 4, Human/isolation & purification , Herpesvirus 6, Human/isolation & purification , Enterovirus A, Human/isolation & purification , Helper Viruses/isolation & purification
2.
Cell reports Medicine ; 2023.
Article in English | EuropePMC | ID: covidwho-2299145

ABSTRACT

Differential host responses in coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome in children (MIS-C) remain poorly characterized. Here we use next-generation sequencing to longitudinally analyze blood samples from pediatric patients with acute COVID-19 (n=70) or MIS-C (n=141) across three hospitals. Profiling of plasma cell-free nucleic acids uncovers distinct signatures of cell injury and death between COVID-19 and MIS-C, with increased multi-organ involvement in MIS-C encompassing diverse cell types including endothelial and neuronal cells, and an enrichment of pyroptosis related genes. Whole blood RNA profiling reveals upregulation of similar pro-inflammatory pathways in COVID-19 and MIS-C, but also MIS-C specific downregulation of T cell-associated pathways. Profiling of plasma cell-free RNA and whole blood RNA in paired samples yields different yet complementary signatures for each disease state. Our work provides a systems-level view of immune responses and tissue damage in COVID-19 and MIS-C and informs the future development of new disease biomarkers. Graphical Loy et al. use cell-free RNA, whole blood RNA, and cell-free DNA sequencing to characterize distinct host response and cellular injury profiles in pediatric patients with MIS-C and/or COVID-19. This study highlights the complementary information from cell-free and whole blood RNA analyses, with broad implications for future liquid biopsy applications.

3.
J Infect Dis ; 226(10): 1688-1698, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2034602

ABSTRACT

BACKGROUND: As of early 2022, the Omicron variants are the predominant circulating lineages globally. Understanding neutralizing antibody responses against Omicron BA.1 and BA.2 after vaccine breakthrough infections will provide insights into BA.2 infectivity and susceptibility to subsequent reinfection. METHODS: Live virus neutralization assays were used to study immunity against Delta and Omicron BA.1 and BA.2 variants in samples from 86 individuals, 24 unvaccinated (27.9%) and 62 vaccinated (72.1%), who were infected with Delta (n = 42, 48.8%) or BA.1 (n = 44, 51.2%). Among the 62 vaccinated individuals, 39 were unboosted (62.9%), whereas 23 were boosted (37.1%). RESULTS: In unvaccinated infections, neutralizing antibodies (nAbs) against the three variants were weak or undetectable, except against Delta for Delta-infected individuals. Both Delta and BA.1 breakthrough infections resulted in strong nAb responses against ancestral wild-type and Delta lineages, but moderate nAb responses against BA.1 and BA.2, with similar titers between unboosted and boosted individuals. Antibody titers against BA.2 were generally higher than those against BA.1 in breakthrough infections. CONCLUSIONS: These results underscore the decreased immunogenicity of BA.1 compared to BA.2, insufficient neutralizing immunity against BA.2 in unvaccinated individuals, and moderate to strong neutralizing immunity induced against BA.2 in Delta and BA.1 breakthrough infections.


Subject(s)
Antibodies, Neutralizing , Vaccines , Humans , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL